145 research outputs found

    Introductory lectures to loop quantum gravity

    Full text link
    We give a standard introduction to loop quantum gravity, from the ADM variables to spin network states. We include a discussion on quantum geometry on a fixed graph and its relation to a discrete approximation of general relativity.Comment: Based on lectures given at the 3eme Ecole de Physique Theorique de Jijel, Algeria, 26 Sep -- 3 Oct, 2009. 52 pages, many figures. v2 minor corrections. To be published in the proceeding

    Bi-gravity with a single graviton

    Full text link
    We analyze a bi-gravity model based on the first order formalism, having as fundamental variables two tetrads but only one Lorentz connection. We show that on a large class of backgrounds its linearization agrees with general relativity. At the non-linear level, additional degrees of freedom appear, and we reveal the mechanism hiding them around the special backgrounds. We further argue that they do not contain a massive graviton, nor the Boulware-Deser ghost. The model thus propagates only one graviton, whereas the nature of the additional degrees of freedom remains to be investigated. We also present a foliation-preserving deformation of the model, which keeps all symmetries except time diffeomorphisms and has three degrees of freedom.Comment: 29 page

    A note on the Plebanski action with cosmological constant and an Immirzi parameter

    Full text link
    We study the field equations of the Plebanski action for general relativity when both the cosmological constant and an Immirzi parameter are present. We show that the Lagrange multiplier, which usually gets identified with the Weyl curvature, now acquires a trace part. Some consequences of this for a class of modified gravity theories recently proposed in the literature are briefly discussed.Comment: 14 pages. v2: factor 2 corrected, updated reference

    Null twisted geometries

    Full text link
    We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is naturally decomposed into a conformal metric and scale factors, forming locally conjugate pairs. Proper action-angle variables on the gauge-invariant phase space are described by the eigenvectors of the Laplacian of the dual graph. We also identify the variables of the phase space amenable to characterize the extrinsic geometry of the foliation. Finally, we quantise the phase space and its algebra using Dirac's algorithm, obtaining a notion of spin networks for null hypersurfaces. Such spin networks are labelled by SO(2) quantum numbers, and are embedded non-trivially in the unitary, infinite-dimensional irreducible representations of the Lorentz group.Comment: 22 pages, 3 figures. v2: minor corrections, improved presentation in section 4, references update

    On the Relations between Gravity and BF Theories

    Full text link
    We review, in the light of recent developments, the existing relations between gravity and topological BF theories at the classical level. We include the Plebanski action in both self-dual and non-chiral formulations, their generalizations, and the MacDowell-Mansouri action.Comment: v3: journal typeset versio

    Sachs' free data in real connection variables

    Full text link
    We discuss the Hamiltonian dynamics of general relativity with real connection variables on a null foliation, and use the Newman-Penrose formalism to shed light on the geometric meaning of the various constraints. We identify the equivalent of Sachs' constraint-free initial data as projections of connection components related to null rotations, i.e. the translational part of the ISO(2) group stabilising the internal null direction soldered to the hypersurface. A pair of second-class constraints reduces these connection components to the shear of a null geodesic congruence, thus establishing equivalence with the second-order formalism, which we show in details at the level of symplectic potentials. A special feature of the first-order formulation is that Sachs' propagating equations for the shear, away from the initial hypersurface, are turned into tertiary constraints; their role is to preserve the relation between connection and shear under retarded time evolution. The conversion of wave-like propagating equations into constraints is possible thanks to an algebraic Bianchi identity; the same one that allows one to describe the radiative data at future null infinity in terms of a shear of a (non-geodesic) asymptotic null vector field in the physical spacetime. Finally, we compute the modification to the spin coefficients and the null congruence in the presence of torsion.Comment: 23 pages + Appendix, 2 figures. v2: Improved text and some amendments throughout, added more details on the relation between 2+2 foliations and null tetrads, updated references. Version submitted for peer reviewing. v3: Few minor amendments, footnote added on a null congruence in the presence of torsion; matches published versio

    Chiral description of ghost-free massive gravity

    Get PDF
    We propose and study a new first order version of the ghost-free massive gravity. Instead of metrics or tetrads, it uses a connection together with Plebanski's chiral 2-forms as fundamental variables, rendering the phase space structure similar to that of SU(2) gauge theories. The chiral description simplifies computations of the constraint algebra, and allows us to perform the complete canonical analysis of the system. In particular, we explicitly compute the secondary constraint and carry out the stabilization procedure, thus proving that in general the theory propagates 7 degrees of freedom, consistently with previous claims. Finally, we point out that the description in terms of 2-forms opens the door to an infinite class of ghost-free massive bi-gravity actions. Our results apply directly to Euclidean signature. The reality conditions to be imposed in the Lorentzian signature appear to be more complicated than in the usual gravity case and are left as an open issue.Comment: 26 pages; extended discussion of reality conditions, added reference

    Spinfoam 2d quantum gravity and discrete bundles

    Full text link
    In 4 dimensions, general relativity can be formulated as a constrained BFBF theory; we show that the same is true in 2 dimensions. We describe a spinfoam quantization of this constrained BF-formulation of 2d riemannian general relativity, obtained using the Barrett-Crane technique of imposing the constraint as a restriction on the representations summed over. We obtain the expected partition function, thus providing support for the viability of the technique. The result requires the nontrivial topology of the bundle where the gravitational connection is defined, to be taken into account. For this purpose, we study the definition of a principal bundle over a simplicial base space. The model sheds light also on several other features of spinfoam quantum gravity: the reality of the partition function; the geometrical interpretation of the Newton constant, and the issue of possible finiteness of the partition function of quantum general relativity.Comment: 20 pages, 3 figures. Comments added, to appear in Class.Quant.Gra

    2-vertex Lorentzian Spin Foam Amplitudes for Dipole Transitions

    Full text link
    We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.Comment: 27 pages + appendix, many figures. v2: one more numerical result, plus minor amendment
    corecore